

Student Number:

St. Catherine's School

Waverley

August 2011

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Réading Time 5 minutes
- Working Time 3 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Complete each question in a separate booklet

- Total Marks 120
- Attempt Questions 1 − 10
- · All questions are of equal value

Total marks - 120 Attempt Questions 1-10 All questions are of equal value

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use the Question 1 Writing Booklet.

- (a) Write down the equation of a circle with centre (3, -4) and radius 5 units.
- (b) If $a = \frac{1}{2}$ and $b = -\frac{1}{3}$, find the value of $\frac{a+b}{a-b}$.
- (c) Solve $8x^2 = 2x$.
- (d) Express $\frac{1}{\sqrt{3}} + \frac{1}{2+\sqrt{3}}$ with a rational denominator.
- (e) Find $\sum_{n=1}^{100} (4n+3)$ 2
- (f) Find $\lim_{x\to 2} \frac{x-2}{x^3-8}$.
- (g) If the limiting sum of a geometric series is 48 and the first term is 4, find the common ratio, r.

Question 2 (12 marks) Use the Question 2 Writing Booklet.

- (a) Solve |2x-3| > 5 and graph your solution on a number line.
- (b) Show that $\frac{d}{dx}xe^{\sin x} = e^{\sin x}(1 + x\cos x)$.
- (c) Find $\int \frac{1}{(5x-7)^3} dx$.
- (d) Evaluate:
 - (i) $\int_0^1 e^{\pi x} dx$
 - (ii) $\int_{-1}^{0} \frac{dx}{2x+3}$
- (e) Let $f(x) = \log_e(x-2)$. What is the domain of f(x)?
- (f) Find the gradient of the tangent to the curve $y = e^{\frac{x}{2}}$ at the point where x = 2.

Question 3 (12 marks) Use the Question 3 Writing Booklet.

a) How many sides has a regular polygon if each of its internal angles is 168°?

(b)

Not to scale

A(0,-3), B(3,1), C(x,y) and D(-5,5) are the vertices of a parallelogram, as shown in the diagram above.

(i)	Find θ to the nearest degree.	2
(ii)	Find the coordinates of M , the midpoint of BD .	. 1
(iii)	Find the coordinates of C .	1
(iv)	Show that the line AB has equation $4x - 3y - 9 = 0$.	2
(v)	Find the perpendicular distance between D and the line AB .	. 2
(vi)	Find the area of the parallelogram ARCD	2

Question 4 (12 marks) Use the Question 4 Writing Booklet.

- (a) (i) The fourth term of a geometric series is -27 and the seventh term is 729. Find the first term and common ratio.
 - (ii) Find the sum of the first seven terms of the series.
- (b) (i) Copy and complete the table below. Give your answers to2 decimal places.

х	1	2	3	4	5
4					
$\overline{x(x+1)}$			-		

- (ii) Use all the information above and Simpson's rule, to find an approximation to $\int_{1}^{5} \frac{4}{x(x+1)} dx$.
- (iii) Show that $\frac{4}{x} \frac{4}{x+1} = \frac{4}{x(x+1)}$.

2

2

- Deduce the value of the integral $\int_{1}^{5} \frac{4}{x(x+1)} dx$.
- Hence find the percentage error given by Simpson's rule.

 Answer to 2 decimal places.

Question 5 (12 marks) Use the Question 5 Writing Booklet.

- (a) P is the parabola $y^2 + 4y = x + 3$.
 - Express P in the form $(y-k)^2 = 4a(x-h)$.
 - i) Find the equation of the directrix.
 - (iii) Find the coordinates of the focus.

Not to scale

3

The shaded region which lies between the x axis and the curve $y = \sec x$

from x = 0 to $x = \frac{\pi}{4}$ is rotated about the x axis to form a solid.

Find the volume of the solid.

A pool is being drained and the number of litres of water, L, in the pool at time t minutes is given by the equation $L = 120(40 - t)^2$.

- (i) At what rate is the water draining out of the pool when t = 6 minutes?
- (ii) How long will it take for the pool to completely empty?
- (d) Consider the function whose derivative is given by $\frac{dy}{dx} = x^3(x-2)(x+3)$.

 At what value of x will a maximum turning point exist on the graph of the function? Give a reason for your answer.

Question 6 (12 marks)

Use the Question 6 Writing Booklet.

(a) Solve the equation $e^{4x} + 2e^{2x} = 8$.

3

(b)

The graph shows the position of a particle, moving on a straight line, for the first nine seconds of the motion. S_1 and S_2 are stationary points, I_1 and I_2 are points of inflexion.

State the times, or periods of time, for which:

(i) the particle is stationary

1

(ii) the velocity is negative

. .

the acceleration is positive

. .

Question 6 continues on page 9

Question 6 (continued)

(c)

ABCD is a square and AABE is an equilateral triangle.

(i) Prove
$$\angle EBC = 30^{\circ}$$
.

1

2.

3

If the lengths of the sides of the square are
$$d$$
 cm, prove that the area of triangle CDE is $\frac{d^2(2-\sqrt{3})}{4}$ cm^2 .

End of Question 6

9

Question 7 (12 marks) . Use the Question 7 Writing Booklet.

A particle is moving in straight line so that at time t seconds its displacement from the origin is x metres. Initially the particle is 1 metre to the left of the origin.

The velocity of the particle is given by $v = 2\cos t - 1$.

- Express the displacement x as a function of t.
- At what time is the particle first at rest? (ii)

- Find the position of the particle at this instant.
- Draw the graph of $v = 2\cos t 1$ for $0 \le t \le 2\pi$, showing clearly all intercepts with the axes.
- The Smiths are building an unusually shaped pool in their backyard.

In the diagram, ABCDE represents the shape of the surface of the pool. The sector ABD has centre D and $\angle ADB = \frac{2\pi}{3}$, The points C, D and E lie on a straight line. The arc AB has a length of 6π metres. AE = ED = DC = CB.

Show that AD = 9 metres. Find the exact length of BC. Find the exact area of the pool's surface. Question 8 (12 marks) Use the Question 8 Writing Booklet.

For what values of k does the quadratic equation $(5k-3)x^2-4kx+k+1=0$

have no real roots?

In a netball competition between the Green team and the Blue team, on average the Green team has won three out of the four of their games.

Find the probability that the Green team wins the next two games. 2

2

- In the next three games, what is the probability that the Green team wins more games than the Blue team?
- The diagram shows the graph of $y = \sin x$ and $y = \sqrt{3}\cos x$, $0 \le x \le 2\pi$. The graphs intersect at points A and B.

Not to scale

Show that point A has co-ordinates $\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$

Find the coordinates of point B.

Find the shaded area enclosed by the two graphs.

Question 9 (12 marks) Use the Question 9 Writing Booklet.

Mark borrows \$20 000 from the ABC bank. This loan plus interest is to be repaid in equal monthly instalments of \$399 over five years. Interest of 7.2% p.a is compounded monthly on the balance owing at the start of each month.

Let A_n be the amount owing after n months.

- (i) Over the five year repayment period, how much interest is charged?
- (ii) Show that $A_1 = 19721$.
- (iii) Clearly show that $A_2 = 20000 \times 1.006^2 399(1 + 1.006)$.
- (iv) Deduce then that $A_n = 66500 46500 \times 1.006^n$.
- (v) After two years of repayments Mark decides on the very next day to repay the loan in one full payment. How much will this one payment be?
- (b) The amount Q grams of a carbon isotope in a dead tree trunk is given by $Q = Q_o e^{-kt}$ where Q_o and k are positive constants and time t is measured in years from the death of the tree.
 - (i) Show that Q satisfies the equation $\frac{dQ}{dt} = -kQ$.
 - (ii) Show that if the half life of the carbon isotope is 5500 years (i.e. if it takes 5500 years for the carbon isotope to reduce to half its mass), then $k = \frac{\ln 2}{5500}$.
 - For a particular dead tree trunk, the amount of carbon isotope is only 15% of the original amount in the living tree.

 How long ago did the tree die? Give your answer to the nearest 1000 years.

Question 10 (12 marks) Use the Question 10 Writing Booklet.

1

2

2

1

2

2

The sum of the first 10 terms of the series,

$$\log_2\left(\frac{1}{x}\right) + \log_2\left(\frac{1}{x^2}\right) + \log_2\left(\frac{1}{x^3}\right) + \dots(x > 0)$$
 is 440.

Find the value of x.

3

(b) The diagram shows a rectangle PQRS where P and Q are on the curve and R and S are on the x axis. The point O is the origin and the lengths OS and OR are equal.

Let the length OR = x.

- (i) Show that the area of the rectangle is represented by the expression $A = 2xe^{-x^2}$.
- Find the value of x for which PQRS has a maximum area.

3

Question 10 continues on page 14

Question 10 (continued)

In the isosceles triangle ABC, $\angle ABC = \angle ACB = \alpha$. The points D and E lie on BC and AC, so that AD = AE, as shown in the diagram. Let $\angle BAD = \beta$.

(i) Explain why $\angle ADC = \alpha + \beta$.

1

(ii) Find $\angle DAC$ in terms of α and β .

2

(iii) Hence, or otherwise, find $\angle EDC$ in terms of β .

2

End of Question 10

End of paper

TRIAL HSC MATHEMATICS 2011 SOLUTIONS

	TRACTISC MATHEMATICS 2011 SOLUTION	1/2	
Qn	Solutions	Marks	Comments; Criteria
Ce	$(2-3)^2+(y+4)^2=25$	1	
b d	$\frac{a+b}{a-b} = \frac{\frac{1}{2} - \frac{1}{3}}{\frac{1}{2} + \frac{1}{3}}$		
	a-6 = \frac{1}{2} + \frac{1}{3}	į	
	- <u>- (</u>		
	, Ad		
	- J		
c)	8x2-2x=0		
	2x(4x-1)=0	_	
ľ	2x =0 or 4x-1=0	2	
	1		
(6)	$\frac{\sqrt{3}}{3} + 2 - \sqrt{3} = \frac{\sqrt{3} + 6 - 3\sqrt{3}}{3}$	2	
	-		
	=6-2G		
	7		
e)	5, (4n+3) = 7+11+15++403		
	$S_{100} = \frac{100}{2} (7 + 403)$	2	
	= 20 500		
	_ 55 0		
(1)	lin 2002 = lin		
/	1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	2	
	= 1		
9)	Soo = 9		
	48 = 4	2	·
	48 = 4 1-r		
	48-481 = 4		
	-481 = -44		
	$i \cdot c = \frac{11}{12}$		

Qn	Solutions	Marks	Comments: Criteria
(2) a)	2x-3 >5		
	2x-3>5 or $2x-3<-52x>8$ $2x<-2x>4$ $x<-1x<-1$ or $x>4$	3	
b)	d x e sin x = le sin x + x. cosx e sin x de = e sin x (1+x cos x), as regulied.	.]	
c)	$\int \frac{1}{(5x-7)^3} dx = \int \frac{1}{(5x-7)^{-2}} dx$ $= \frac{(5x-7)^{-2}}{-2x5} + c$ $= \frac{(5x-7)^{-2}}{-(5x-7)^{-2}} + c$		
4)		2	
	$= \frac{1}{\pi} \left(e^{\pi} - 1 \right)$ $= \frac{1}{2\pi + 3} = \frac{1}{2} \int_{-1}^{0} \frac{2}{2\pi + 3} d\pi$ $= \frac{1}{2} \left[\ln \left(2\pi + 3 \right) \right]_{-1}^{0}$ $= \frac{1}{2} \left[\ln 3 - \ln 1 \right]$	2.	

Qn	Solutions	Marks	Comments; Criteria	Q	n Solutions	Marks	Comments: Criteria
f) y=	where $\frac{1}{2}$ is the domain of $f(x)$. $\frac{\pi}{2}$ of $f(x)$. $\frac{\pi}{2}$ if of target at $x=2$ is $\frac{1}{2}e^{\frac{1}{2}}=\frac{1}{2}e^{\frac{1}{2}}$			(3)	-4 212	2	
				b)	(i) map = \frac{5+3}{-5-0} = -\frac{8}{5} \(\text{'} \text{ faio = -\frac{8}{5}} \) \(\text{'} \text{ o= 180 - (58°)} \(\text{'} \text{.0 = 122° (nevert degree)} \)	2	
		,			(i) $M = \begin{pmatrix} -5+3 \\ 2 \end{pmatrix}$ $5+1 \\ 2 \\ -(-1,3)$	1	
					(iii) $C = (-2,9)$ (iv) $M_{AB} = \frac{1+3}{3}$ $M_{AB} = \frac{4}{3}$. $(y+3) = \frac{4}{3}(x)$		
					3y + 9 = 4x 4x - 3y - 9 = 0, as required. (V) $b = 14(-5) - 3(5) - 9$	2	•: •:
					= 1-20-15-9 = 8 \frac{4}{5} units	2	

arks Com	ments; Criteria	Q	Solutions	Marks	Comments: Criteria
1		(3	180-168 = 12° 12°/168 360-12 = 30 -longen has so rides.	2	
			137932 133		
		b)	$\binom{1}{1} \stackrel{m}{}_{AD} = \frac{5+3}{-5-0}$ $= -8$ 5		
			1.0=122° (nevert degree)	2	
			(i) $M = \begin{pmatrix} -5+3 \\ 2 \end{pmatrix}$ $5 \neq 1$	1	
			(ii) Cz (-2/9)	1.	
			(iv) $M_{AB} = \frac{1+3}{3}$ $M_{AB} = \frac{4}{3}$		
			$(y+3)=\frac{4}{5}\binom{2}{x}$	_	
			: 4x -3y-9=0, as regymed.	2	
			$V) = \frac{14(-5) - 3(5) - 9}{\sqrt{16+9}}$	2	
			$ \begin{array}{c c} & \sqrt{6+9} \\ & -20-15-9 \\ \hline & 5 \\ \hline & 8\frac{4}{5} \text{ units} \end{array} $		

Qn	A = 6h. $475 = \sqrt{3^2 \epsilon (1+3)^2}$ = $\sqrt{25}$ = 5 unts		
	PB continued (1) $A = 6h$. $d_{AB} = \sqrt{3^2 t (1+3)^2}$ $= \sqrt{25}$ $= 5$ units Area of parallels yrain = $5 \times \frac{44}{5}$		
		•	

Qn	Solutions	Marks	Comments; Criteria
E			
αj	(1). $T_{4} = -27$ $T_{7} = 729$		
	$(a)^3 = -27$ (1) $ar^6 = 729$ (2)		
	3 ÷ 0 ; 3 = -27		
	Sub 1 = -3 into 1: -27 a=-27	2	
	a = 1, 1=-3		
	(ii) Sn= a(1-r")		
	(ii) $S_{71} = \frac{a(1-r^{*})}{1-r}$ $\therefore S_{7} = \frac{(1-(-s)^{7})}{4}$	2	•
	= \frac{218%.}{4}		
	:		·
6)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	ii) h=1 A= 3 [(2+0.13)+4(0.67+0.2)+2(0.33)]	2	
	= 2-09		
((ii) 4 - 4 = 4(x+1) -4x		
	x x+1 x(x+1) = 4x74-4x	1	
	x(xx1)		
	$=\frac{4}{\chi(\chi H)}$, as require		
ı		I	İ

Qn	Solutions	Marks	Comments: Criteria
	Overhoon 4 continued. (iv) $\int_{1}^{5} \frac{4}{x(x+1)} dx = \int_{1}^{5} \left(\frac{4}{x} - \frac{4}{x+1}\right) dx$ $= \left[4 _{M2} - 4 _{n}(x+1)\right]_{1}^{5}$		-
	= (4/ms - 4/m6) - (4/mt-4/m2) = 4(lns-ln6+1/m2)	2	
	(V) Exact value = 4 (Ins - In6 +In2) :. %. Error = 2.09 - 4 (Ins - In6+In2) × 100 4 (Ins - In6+In2) = 2.29% (24p)	2	

Qn	Solutions	Marks	Comments; Criteria	
(5)	(a) $y^2 + 4y = x + 3$ (i) $y^2 + 4y + 4 = x + 7$ $(y + 2)^2 = x + 7$	2	·	
	(1) Notes: of P is at $\left(-7,-2\right)$			
	Equation of directors is $1 = -\frac{29}{4}$	1.	·	
-	(ii) Focus = $\left(-6\frac{3}{4}, -2\right)$	1		
-	$V = \pi \int_{0}^{b} y^{2} dx$ $= \pi \int_{0}^{\pi} \int_{ee^{2}} x dx$	·		
	= T [tun] = T (1-0) = T (1-0)	3		
	-, V = M			,
1 1	. ·	l	. 1	÷

Qn	Solutions	Marks	Comments: Criteria].	Qn	Soluti
	Arens 5 Gahnied.				(6)	a) let u= e2x
c)	L= 120 (40-E)		· 1			uy la ne e
	(i) de = 240 (40-t)1		,			·. (e2x)2 + 2e2x -
	(1) (de = 240 (40 1)1					u² +2u -8
	dt = -240(40-t).		•			(u+4)(u-2)
	! when t=6, dL = -240 (40-6)					. u :
	dt = -8160 L/mis	2				== e2x = -4 or
	Wider is draining out of the usol at					Norohhain
	8160 L/mir.					
						following is x= Ir
	(i) 0=120 (40-4)2					. Jewiczy is .
	·. (40-t) ² >0	1				
	:'.t = 40				Ы	(i) Particle is statemany
	. Rol will completely emply					(ii) Velocity is regative
	after 40 mintes.		,			
d)	din 3 (2) (3 + 3)				((ii) Acederakan is portitu
"/	$\frac{dy}{dx} = x^3(x-z)(x+3)$					
	(a) $x^3(n-2)(x+3) \Rightarrow x = 0, 2, -3$				(c)	(1)
	x = 0, 2, -3					E
	A+ x=0 x -1 0 1_					60'
	11+ 12-0 2 -1 0 1 y' +ve ve		,			X
	: At x =0, a maximum turny pt exists.					(c) (c)
		2				A
	94 2 = 2 1 2 3 y'-ve - rve / x					Since DABE is agr
	,					a squar, then LEB
1	17 x=-3 1 -4 -3 -2 y'-r tre //x					
	9 for - 1 to / x		·			
[·			1		

Qn	Solutions N	Marks	Comments: Criteria]. -	Qn	Solutions	Marks	Comments: Criteria	
Areston 5 Gathwee	,				6)	a) let == ex			
c) L= 120 (40-t)			ı		1	$- (e^{2x})^2 + 2e^{2x} - 8 = 0$			
(i) de = 240 (40	-t)l		•			- (e) t de			
df = - 240 (9	-o-t)					$u^2 + 2u - 8 \Rightarrow 0$			
210 (-1. (40-()		•			(u+4)(u-2)=0 $\therefore u=-4 \text{ or } 2$		•	
! when t = 6, dt	= -29-0 (40-6)		•			•		,	
. 03.	= -8160 L/min	2				e ^{2x} = -4 or e ^{2x} = 2			
- Woder is draining	out of the pool at					Nosoluhian 2016 = 1n2			
8160 L/v						$\therefore x = \frac{\ln 2}{3}$	3		
						- following is $x = \frac{\ln 2}{2}$.			
(i) 0=120 (40.	-+) -					r. former is 12			
·. (40-t)2>0		1							
i.t = 40		1			b)	(i) Particle is statemany at t=1,5	1		Ì
. Rod will	completely empty					(ii) Velocity is regative when 12+25	1		İ
after 400	untes.				1	(in) volume (is regular to	1		
1) 1. 3.	(-		,		((i) Acceleration is positive when 3 tt 6	, '		
$\frac{dy}{dx} = x^3(x - \frac{1}{2})$	2)(2+3)								
	l l				(c)	(I) D			
(d x3(n-2)(x+	x = 0, 2, -3				'	E			
104 25 21 11			•			66			-
A+ x =0 2 -1	- Tre					1 × × 1			.
	a maximum turning pt exists.					(6)		•	ľ
•	1 9	2				A B		•	-
At 2=2 1 1 2 y'-ve-	nce 1 / v			:		Since DARE is agricultural and ADCD is			
8,104						a sqvar, tren ZEBC = 90-60			
A+ x=-3 1 4 -3-1	_2					=30° as regired	,		
A+ x=-3 7 -4 -3-1 y' -4 -	tre / x								
·									
				1					
							1		
			·			'	,		1
	•			1				•	

Qn	Solutions	Marks	Comments: Criteria
(ā).	CANTINUED IN D'S ESC, EAD; LEBC = LEAD = 30° (DEARS equilibrary and ARCD Square) EB = EA (equal sides of equilibrary $\triangle ARG$) 3C = AD (equal sides of square) $\triangle ESC = \triangle EAD$ (SAS)	2	
la .	D 36 15 15 15 15 15 15 15 15 15 15 15 15 15	3)	

Qn	Solutions	Marks	Comments; Criteria
7	V = 2 cost -1		
	(i) 1= [(2 cost -1) dt		
	x = 2 mit - t + c		
	At t=0, x=-1		
	: -1 = 2 suit-t+C		
	1. x = 2 sat -t -1	2	
•	(ii) Wen v=0, 20st -1 =0 20st =1 cart = £		·
	integ 5.	2.	
	(ii) When t= #, x = 2 = 1 - # - 1 .		
	$= \sqrt{3} - \frac{\pi}{3} - M $		
	(v). V=2cst-1 (0<+ \le 2\pi)	2	
	-3 + T 3 2T 4	2	•

Qn	Solutions	Marks	Comments; Criteria
	(1) Lz / O (1) Lz		Comments, Criteria
	$\frac{BC}{5.30} = \frac{9}{5.120}.$ $BC = \frac{9}{5.120}.$ $BC = \frac{9}{5.120}.$ $= \frac$	2	Same of the
(1	$= \frac{973}{3}$ $\therefore BC = 3\sqrt{3} \text{ units}$ $\frac{NNE}{577125} = 51156$ $= \frac{1}{2} \cdot 81277 + 27 \cdot \sqrt{3} \cdot 27$ $= 2777 + 27 \cdot \sqrt{3} \cdot 27$ $= 27(\pi + \frac{13}{2}) \cdot 27$	2	

Qn	Solutions	Marks	Comments; Criteria
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	
	(i) $\rho(66) = \frac{3}{4} \times \frac{3}{4}$	2.	
	i) $P(GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG$	2	

Qn	Solutions	Marks	Comments: Criteria
	Getien 8 Controved.		·
	c).		
•	(i) yesin z O		
	y= (5 cs. 2 2)		
	0 7 3 = n/1 / Son 2		
	1. tunx = √3 1. n = \$ 1 T+\$.		
	= 3 4 1	,	
	We x=#, y= xi #.	1	
	= 12		
	$\frac{1}{2} \int_{\Omega} dx A = \left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right) a \mathcal{N}^{1/2} d^{3} .$		·
	(1). When x = 4th, y = 512 4th.		
	$y = -\frac{3}{2}$		
	:. POIN B = (4T , - 13)		
	(iii). Aren = Sty finx - [3 conx) da		
	T/3 Ger		
	= [-can x - B sin x] II	,	
	$= \left(-\cos \frac{4\pi}{3} - \sqrt{3} \sin \frac{4\pi}{3}\right) - \left(-\cos \frac{\pi}{3} - \sqrt{3} \sin \frac{\pi}{3}\right)$		
	$=(-\cos\frac{\pi}{3},-1,3),$		
	$= \left(\frac{1}{2} - \sqrt{3} \cdot \left(\frac{-\sqrt{3}}{2}\right)\right) - \left(-\frac{1}{2} - \sqrt{3} \cdot \frac{\sqrt{3}}{2}\right)$) ·	
	- 1 + 3 + 1 + 3		
	= 4 u ²		

Qn	Solutions	Marks	Comments; Criteria
9	a) (i) 399 x 60 = \$23940. INVENT = \$23940 - \$20000 = \$3940.	J	·
	(i)). A, = 2000 (1+0.006) - 399		
	$7.27 pq = \frac{7.2}{12}$ = 0.6° kparmonh = 0.006 = \$19721, as regrised.		
	(iii) $A_2 = A_1 (1.006) - 399$ = (2000 (1.006) - 399) 1.006 - 399 $= 20000 (1.006)^2 - 399 (1+1.006)$ as required.	2	
		2	
	= 25000 (1.006)" - (6500 (1.006)" + 66500 = 66500 - 46500 (1.006)", as ryuned		

Qn Qq crahaved. Solutions	Marks	Comments: Criteria
(V) 2 years = 24 months Azy = 66500 - 46500 x 1.006 ²⁴ = \$12820.99 Mark will pay \$12820.99 to report the (san.	1	
(b) (i) $\varphi = \varphi_0 e^{-kt}$ $\frac{d\varphi}{dt} = -k \varphi_0 e^{-kt}$ $= -k \varphi_1 \text{ as regularized}$	1	
(ii). $l = 2e$ $\frac{1}{2} = e$	2	
$= -\frac{\ln 2}{-550^{\circ}}$ $= \frac{\ln 2}{5500} \cdot \alpha s \text{ req N red}$ $= \frac{\ln 2}{5500} \cdot \alpha s \text{ req N red}$ $= \frac{\ln 2}{5500} \cdot t$ $= \ln 0.15 = -\frac{\ln 2}{5500} \cdot t$ $= \ln 0.15 \times 5500$ $= \ln 2$	2	

Qn	Solutions	Marks	Comments; Criteria
	(a) $\log_2 x^{-1} + \log_2 x^{-2} + \log_2 x^{-3} + \cdots + \log_2 x^{-4}$ $= -\log_2 x - 2\log_2 x - 3\log_2 x - \cdots - \log_2 x$ Since $\frac{1}{L}(a+L)$ die $-\log_2 x$, $n=10$. $490 = \frac{10}{L} \left[-\log_2 x - \log_2 x \right]$ $490 = 5 \left(-11\log_2 x \right)$ $88 = -11\log_2 x$ $-8 = \log_2 x$ $x = 2^{-8}$ $x = 2^{-8}$ $x = \frac{1}{256}$	3	_
	(i) $\frac{dA}{dx} = 2\pi \left(-2x\right) e^{-x^{2}} + 2\left(e^{-x^{2}}\right)$ $= 2e^{-x^{2}} \left(-2x^{2} + 1\right)$	1	
	Let $\frac{dA}{dx} = 0$. i.e. $2e^{-x^2}(-2x^2+1) = 0$. $2e^{-x^2} = 0$ of $1-2x^2 = 0$ No solution $2x^2 = 1$ $x^2 = \frac{1}{2}$ $3x = \frac{1}{2}$ 13ut $x > 0$. $3x = \sqrt{1}$		

Qn	Solutions	Marks	Comments; Criteria
	Test $x = \frac{1}{\sqrt{2}}$ $\frac{x}{dx} > 0 \frac{7}{\sqrt{2}} \frac{1}{\sqrt{2}}$ $\frac{dx}{dx} > 0 \frac{7}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$ $\frac{dx}{dx} > 0 \frac{7}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac$	3	·
	(1) CADC is extensir anyle of DABO = sum of opposite 2 viters is anyle of LABO = sum of it and anyle of the control of the con		
	(11) LDAC = (80 - (x+p+x) (aylesum of sADC) = 180 - (2x+p) = (80-2x-p	2	
	(iii) (ADE = LAED (and opposite equal sides). and LADE + LAED + LDAC = 180° (and sum) ADDE	ļ	
	$2 \times 2 \text{ ADE} = 180 - 20 \text{ ACC} \left(\text{Since } 2 \text{ ADE} = 2 \text{ AED} \right)$ $2 \times 2 \times$		
	$= \frac{2\alpha + \beta}{2}$ $= \alpha + \frac{\beta}{2}$	2	
	Now ZAOC = 2ACE + ZEOC : dtp = x+ \beta + CEOC : LEOC = dtp - d - \beta \frac{1}{2}		
	= 1/2		
	- told of Paper -	·	·